

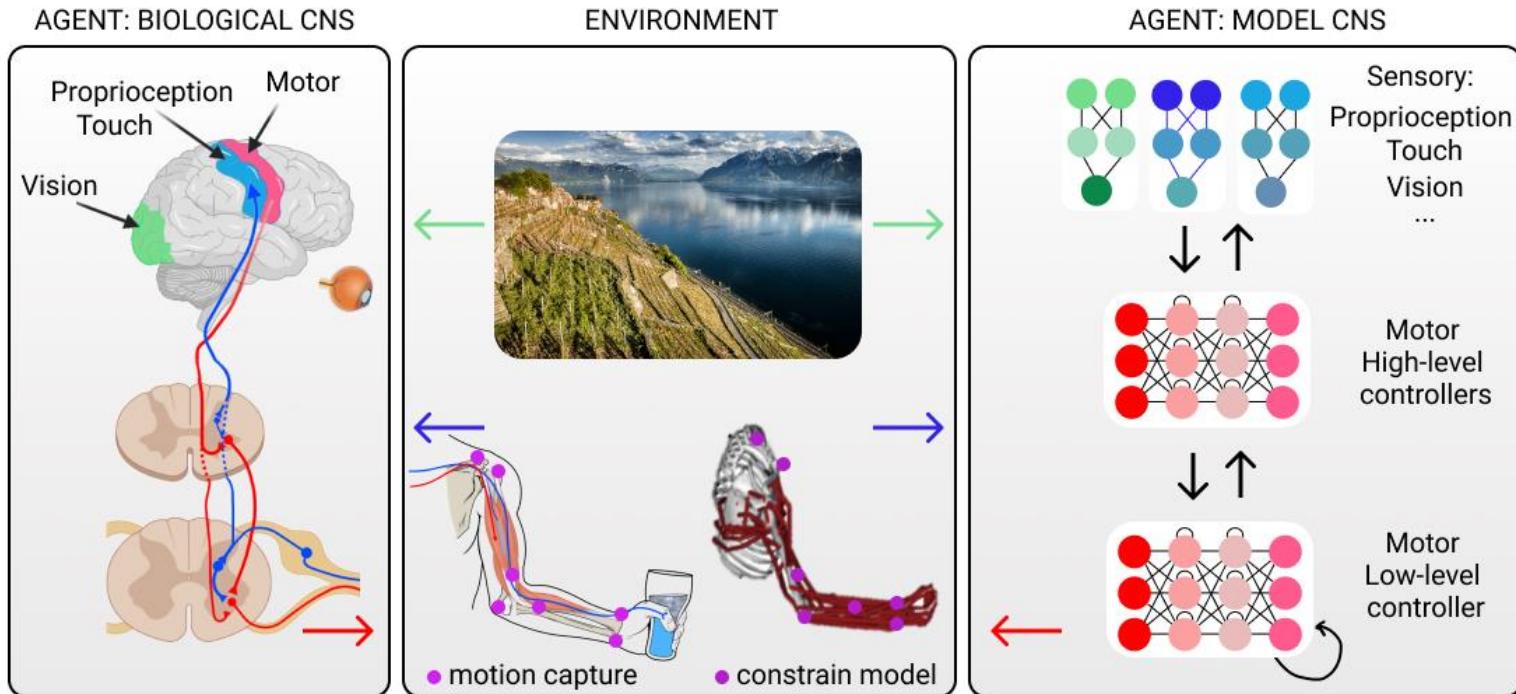
NX-414: Brain-like computation and intelligence

Alexander Mathis

alexander.mathis@epfl.ch

Lecture 10, April 30 2025

Reverse engineering neural circuits



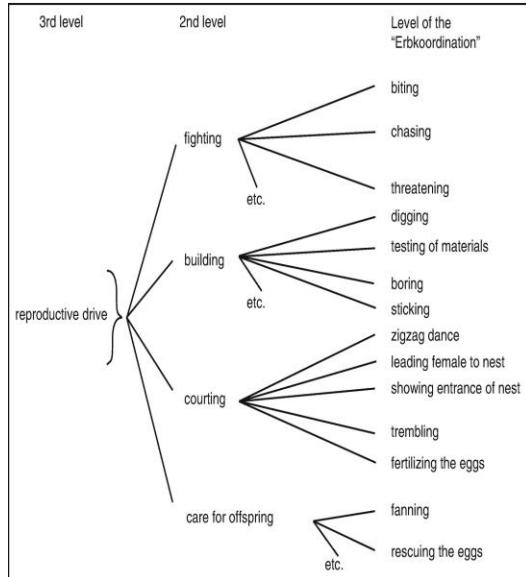
<https://www.youtube.com/watch?v=fbqHK8i-HdA>

Human motor control example

Why is control hard for the brain?

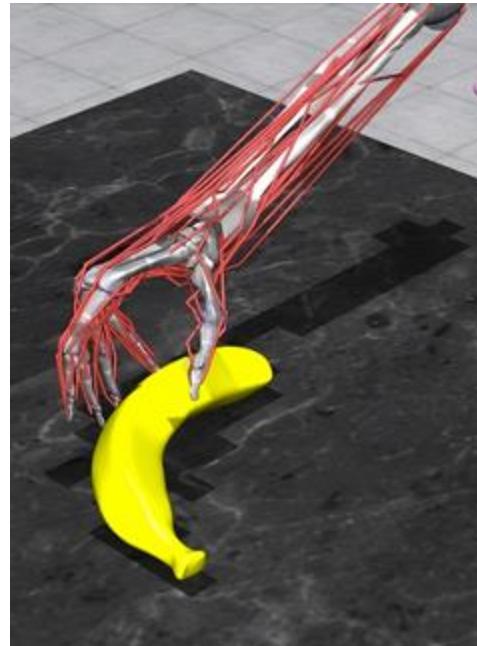
- Unlike (typical) robots, animals live in **uncertain** environments
- Animals perform a **wide range** of behaviors
- Animals have **many degrees of freedoms** (e.g. human > 600 muscles)
- Biological sensors are **slower and noisier**
- Animal bodies change substantially over time (development, injury, fatigue, exercise,...). Our brain needs to **adapt** continuously
- Complex animals **learn** most of their behavioral repertoire, so the brain needs to not only control behavior, but also build control algorithms...

Behavior is hierarchical



Tinbergen, 1942

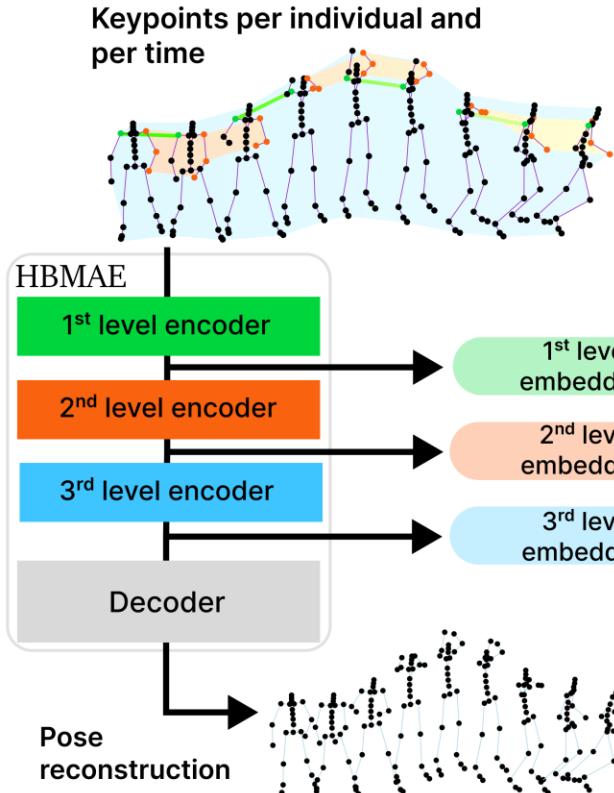
Activities & Actions



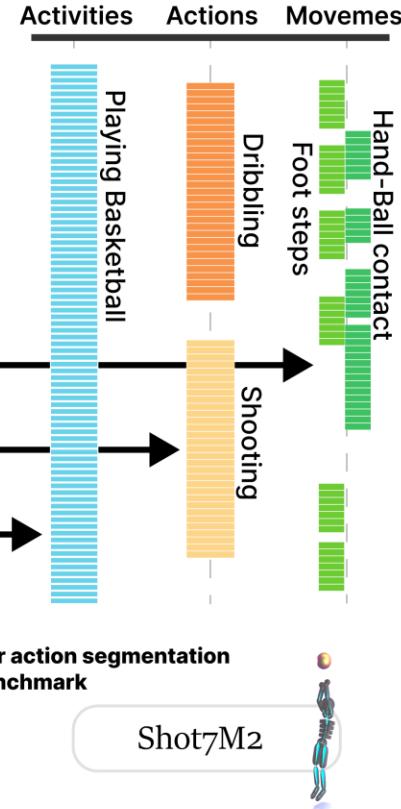
Movemes

Hierarchical BehaveMAE (hBehaveMAE)

I) Pre-training



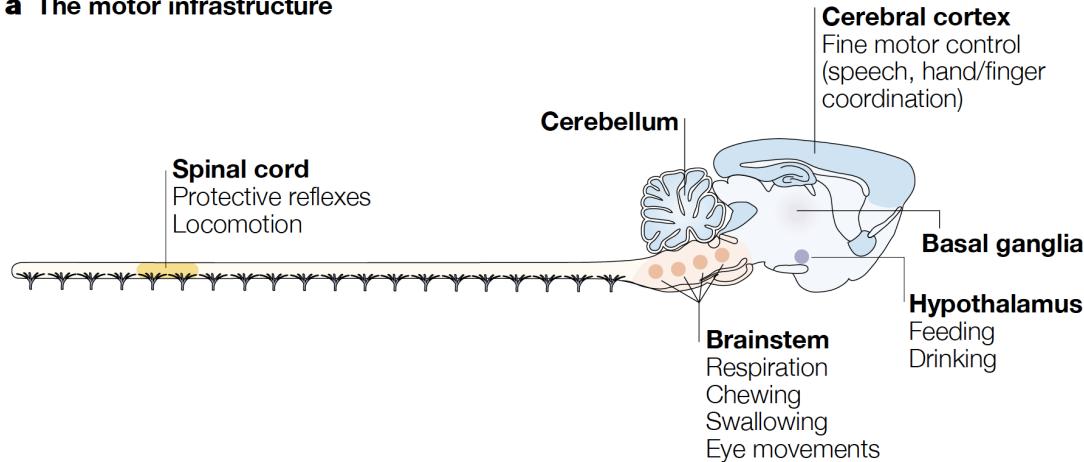
II) Action Segmentation



Anatomy of motor control & pattern generators

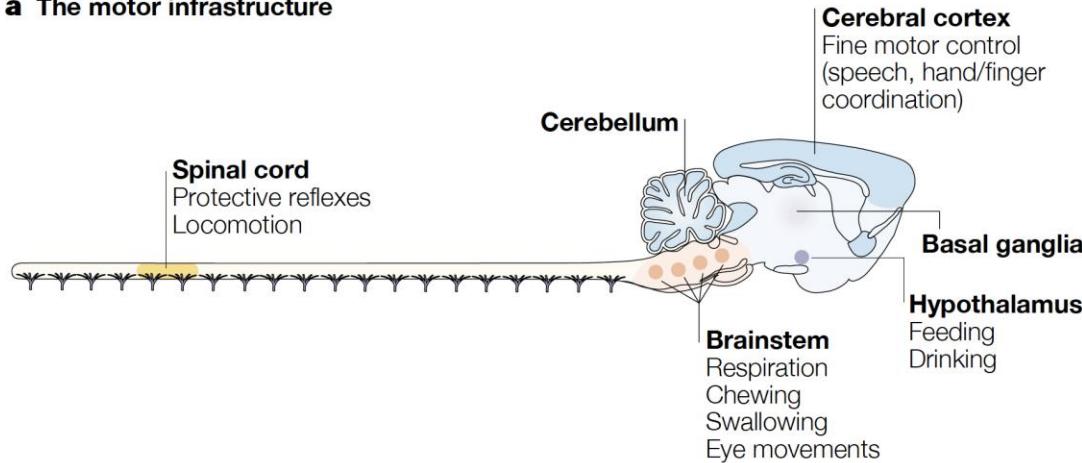
Vertebrate motor control

a The motor infrastructure

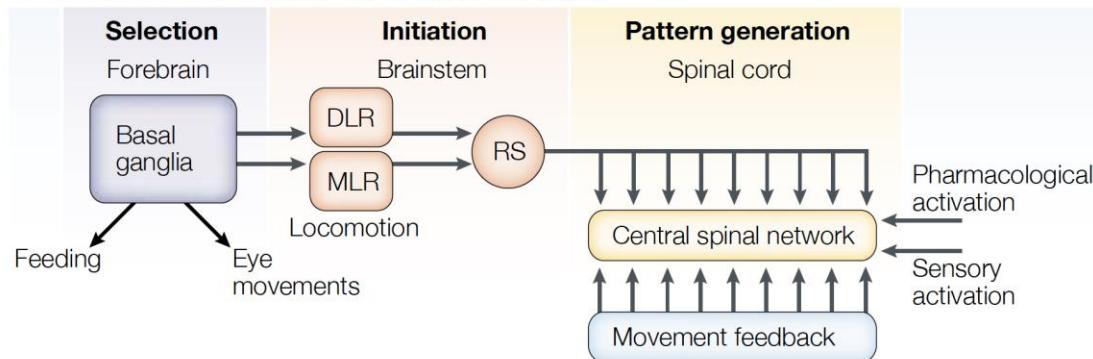


Vertebrate motor control

a The motor infrastructure

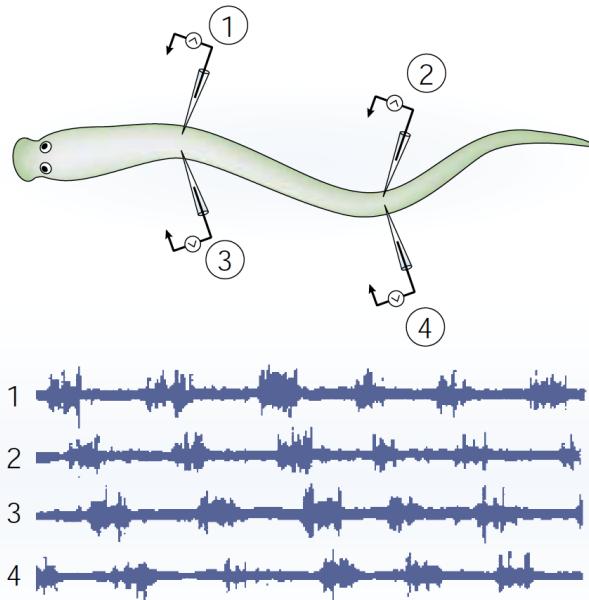


b The vertebrate control scheme for locomotion



Pattern generation in the intact lamprey and an isolated spinal circuit

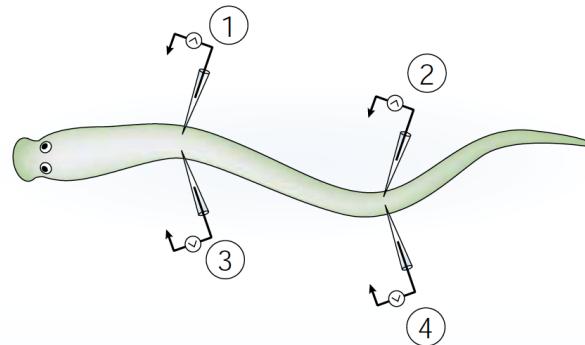
Intact lamprey – locomotion



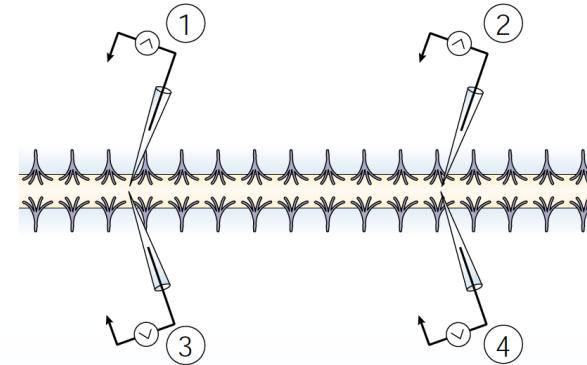
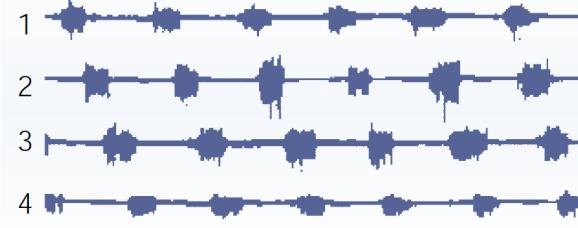
Note: alternation of 1/3 and 2/4 plus lag between 1 and 2.

Pattern generation in the intact lamprey and an isolated spinal circuit

Intact lamprey – locomotion



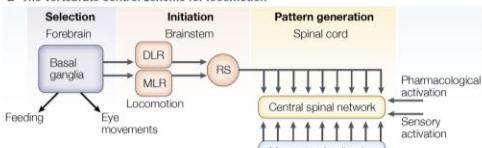
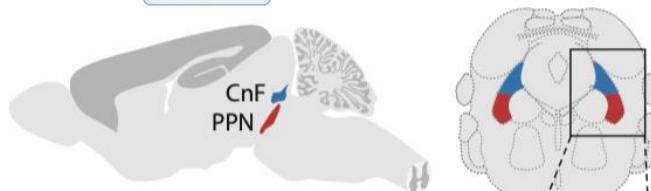
Isolated spinal cord – fictive locomotion



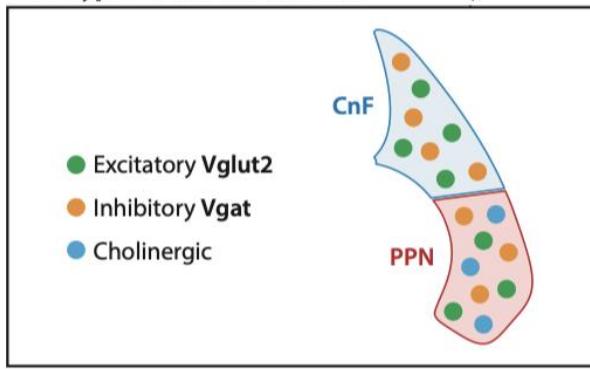
superfusion of glutamate agonists

Brain stem circuits to control locomotion

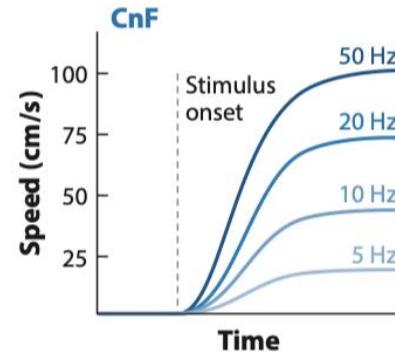
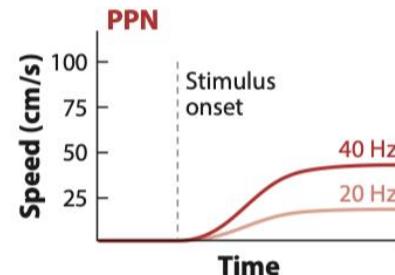
b The vertebrate control scheme for locomotion



Cell types of the CnF and PPN



b Vglut2 ChR2 stimulation



Synchronous (high-speed) gaits

Bound

Alternating (low-speed) gaits

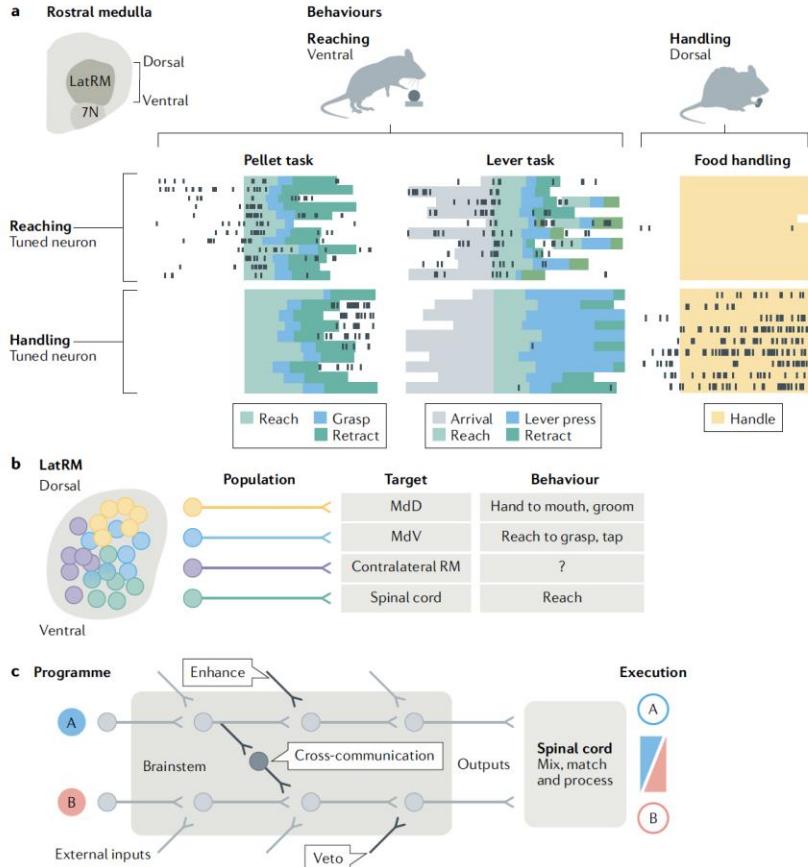
Trot

Alternating (low-speed) gaits

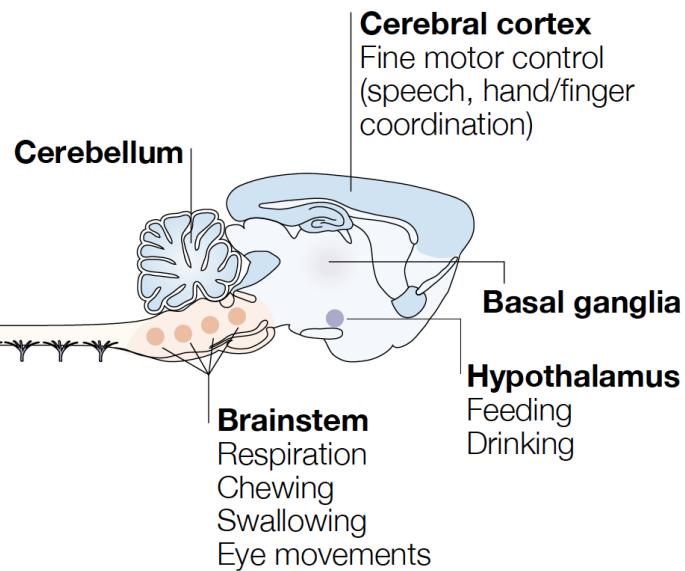
Trot

MLR, mesencephalic locomotor region; PPN, pedunculopontine nucleus; RFL, right forelimb; RHL, right hindlimb.

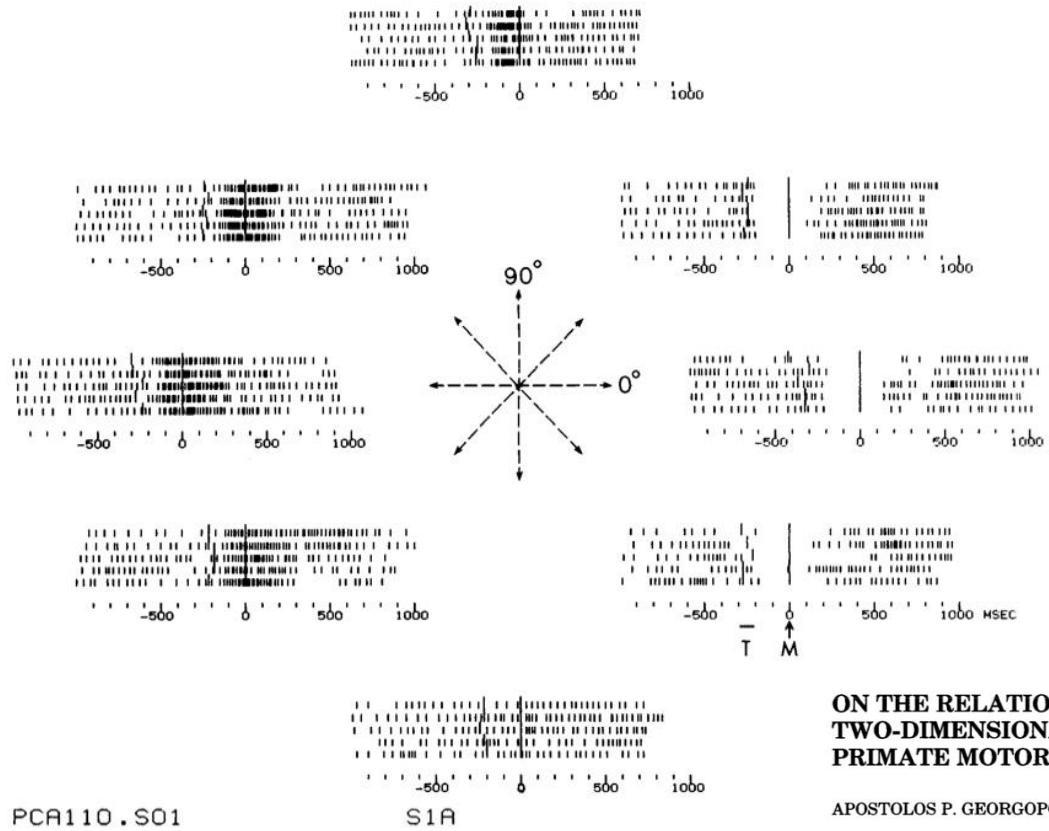
Brain stem circuits to control reaching & handling



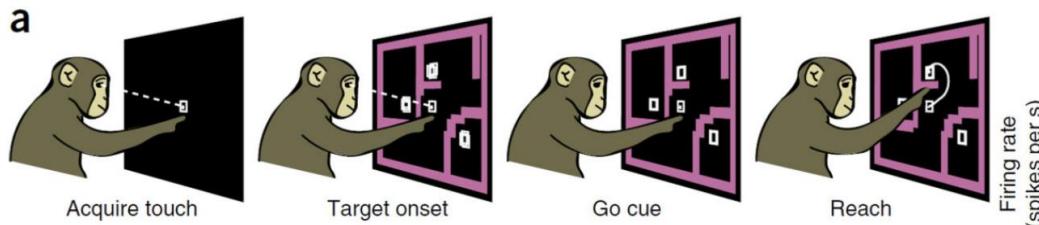
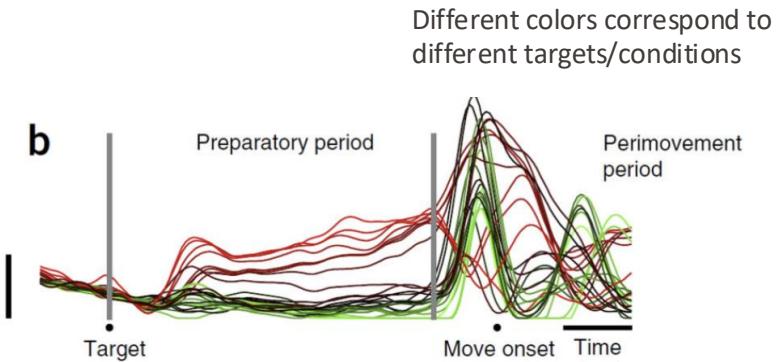
Cortical control



Reminder: Coding for the direction of movement

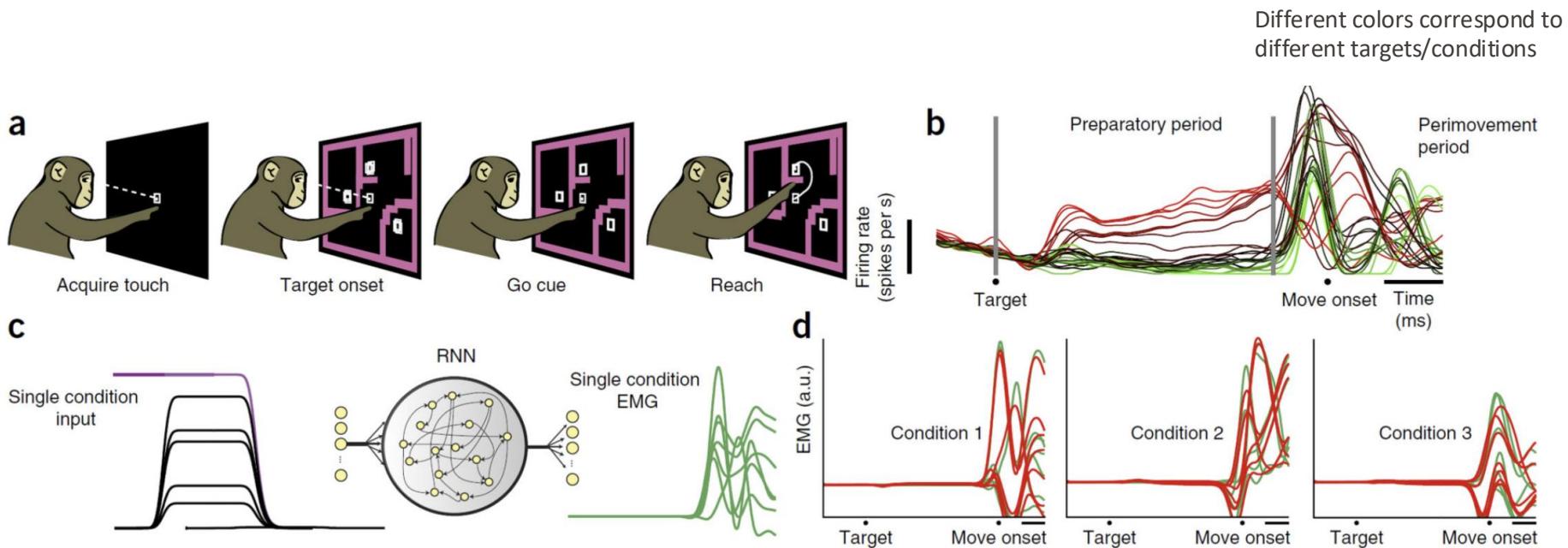


Goal-driven modeling of motor control



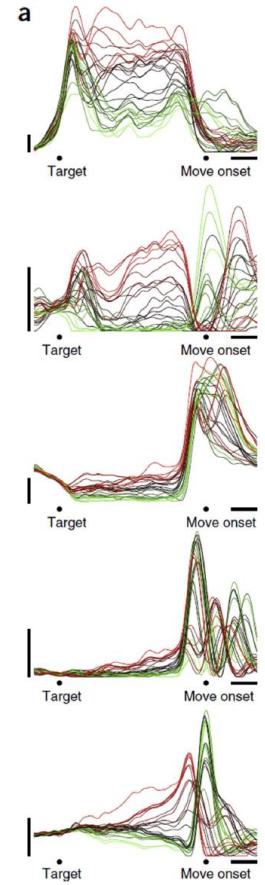
Goal-driven modeling of motor control

Technically data-driven as they fit EMG



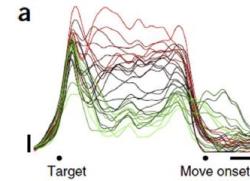
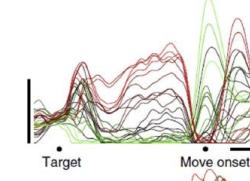
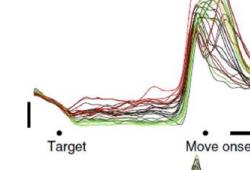
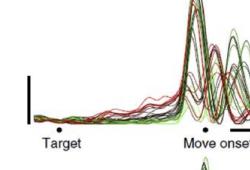
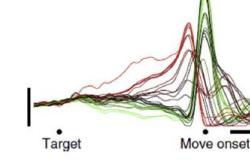
Example Data

Example M1 units

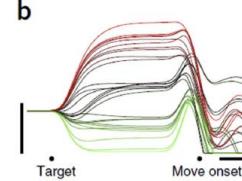
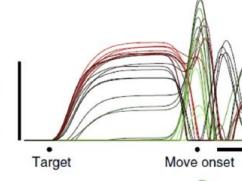
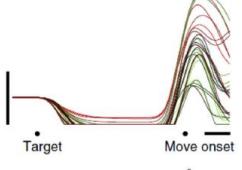
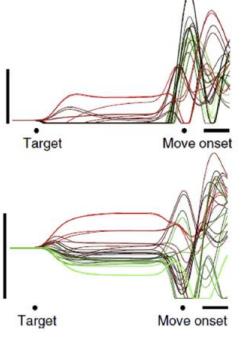
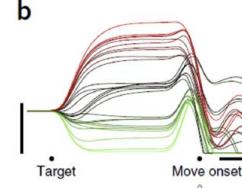
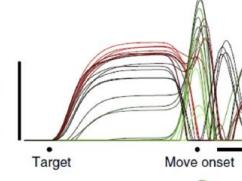
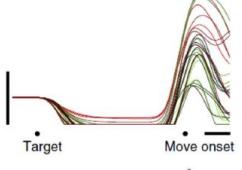
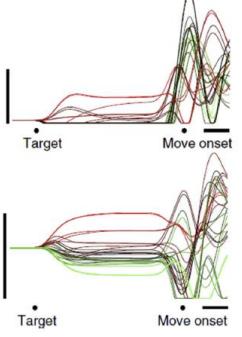


Model predictions

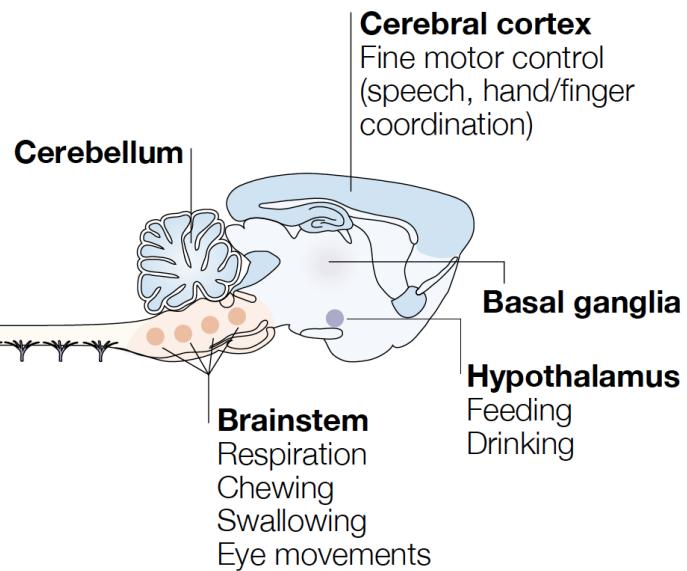
Example M1 units

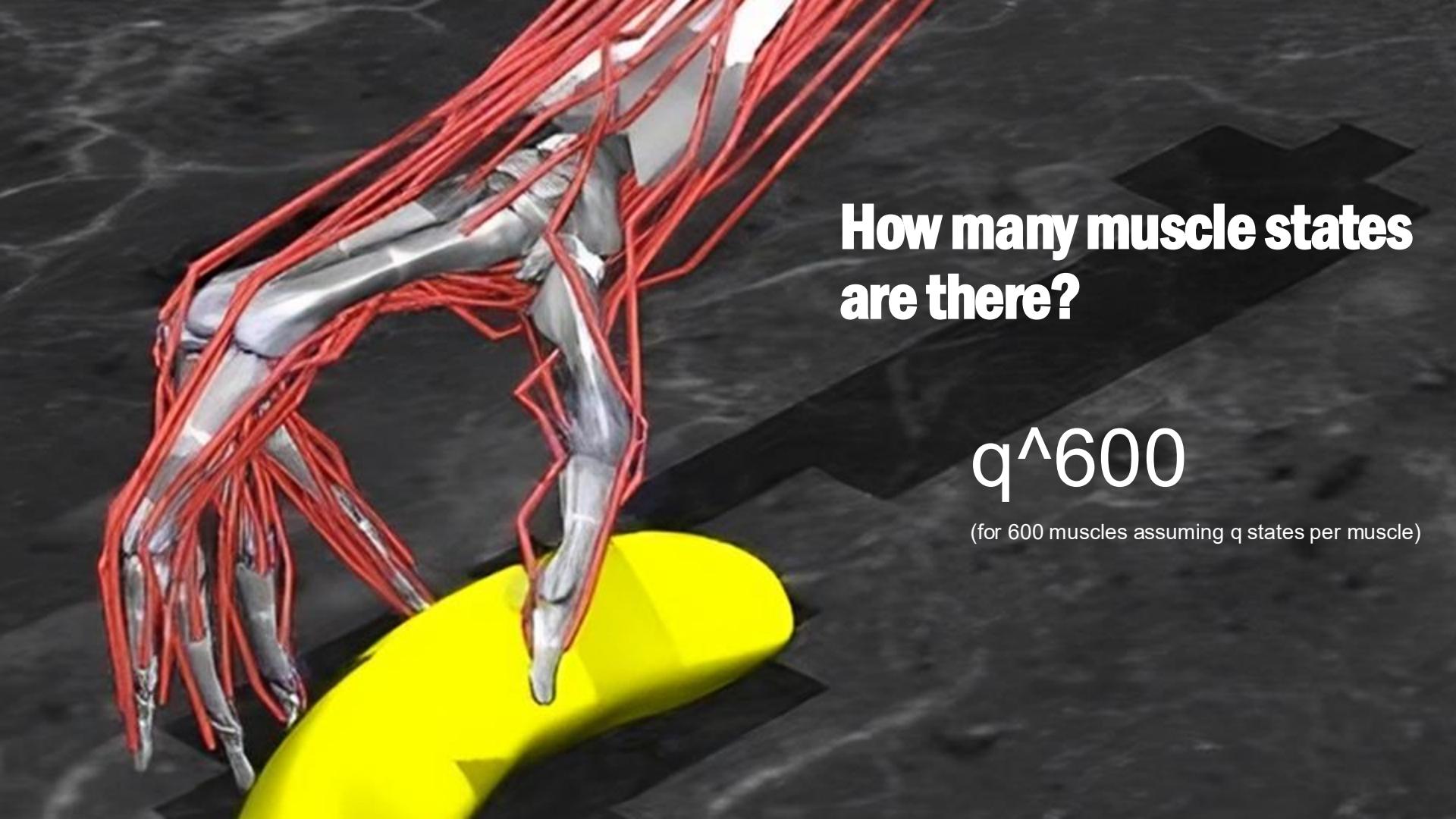


Model units w/wo regularization



How are the many degrees of freedom tamed?

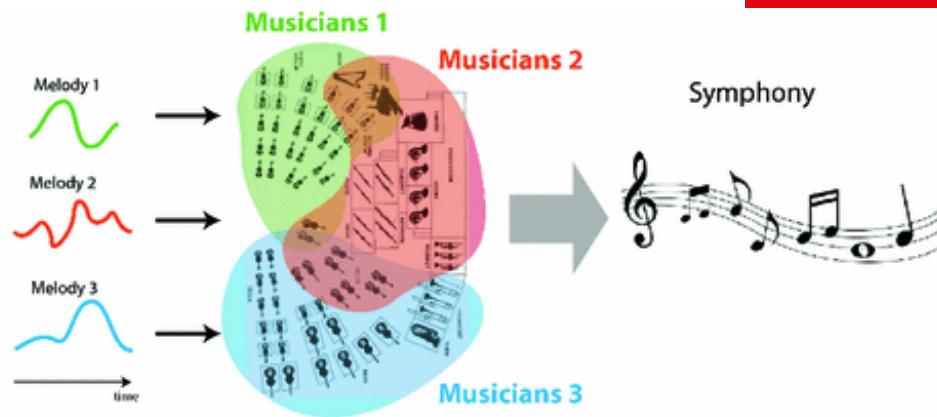
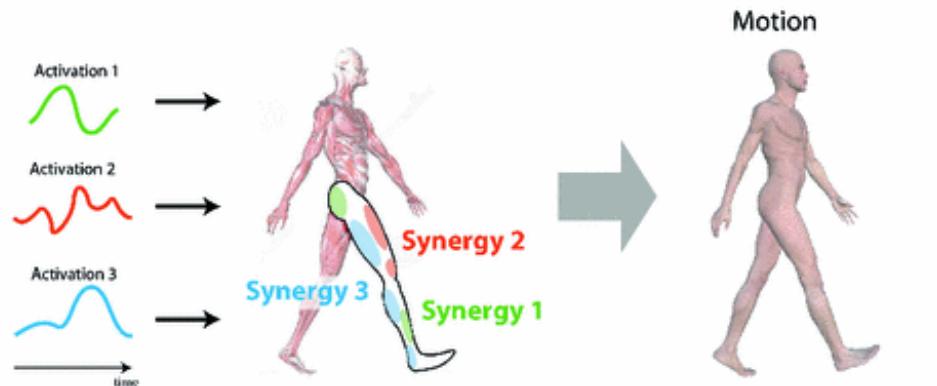




**How many muscle states
are there?**

q^600

(for 600 muscles assuming q states per muscle)



Muscle synergies as principle for motor control

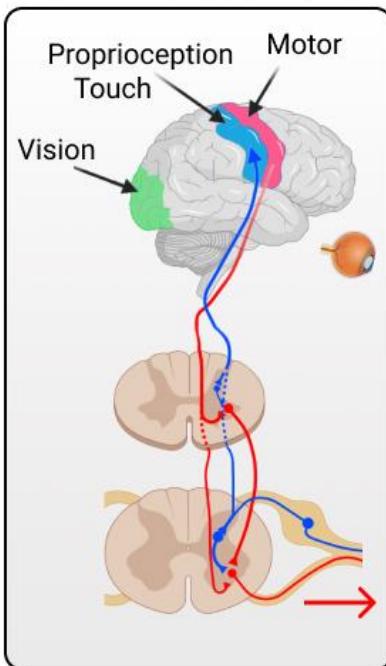
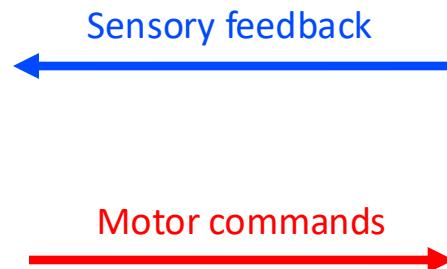
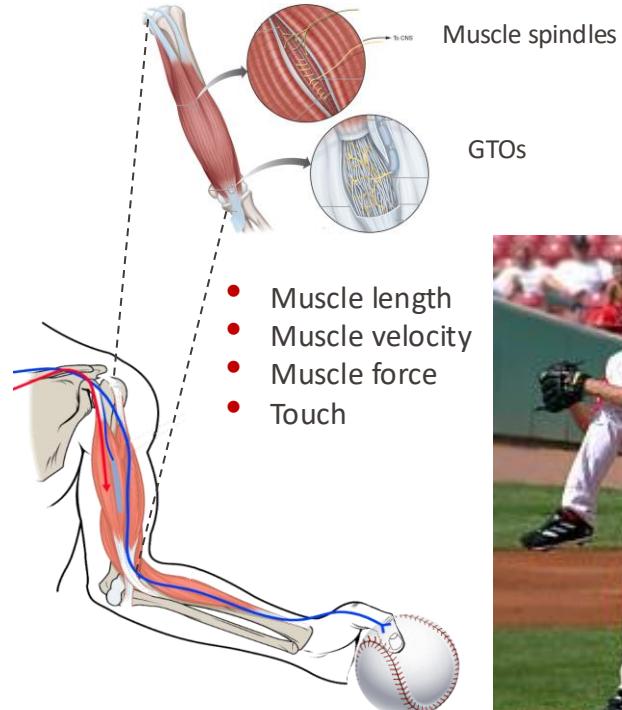
Integration of feedback?

From (open-loop) pattern generation to control theory

Note: Feedback is also present in spinal cord/brain stem examples!

Motor skills need sensory feedback

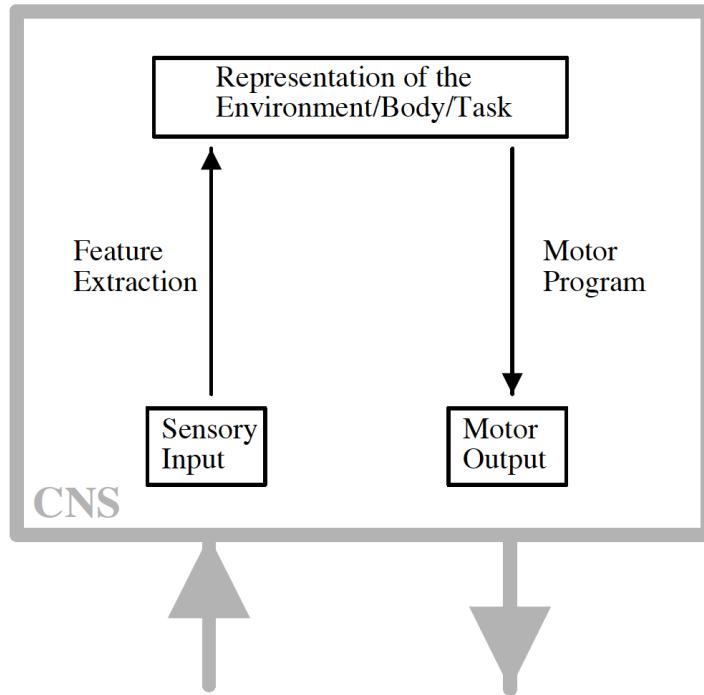
AGENT: BIOLOGICAL CNS



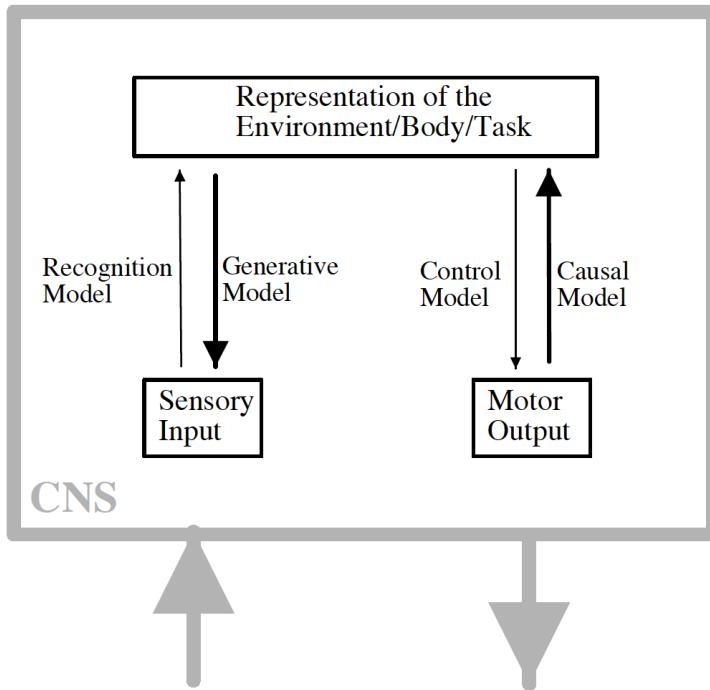
Simple skills require feedback

- Video taken from Roland Johansson Lab - Department of Integrative Medical Biology. Umea University, Sweden

Direct model of perception and control



Inverse models of perception and motor control



$P(G|M)$ causal model
 $P(M)$ Movement prior

$P(M|G)$
 Objective: find motor commands with high posterior probability!

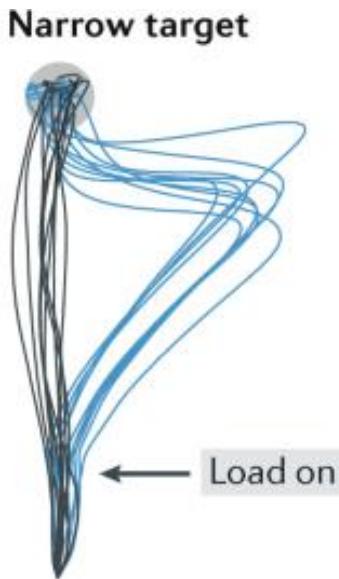
M Motor command
 G goal/target

The thin arrows correspond to the the directions that are desirably but *harder to implement!*

The thick arrows correspond to well-defined (relatively simpler transformations);
 e.g., - generative model of vision: given the state of the world, predicting the retinal image (Optics, ...)

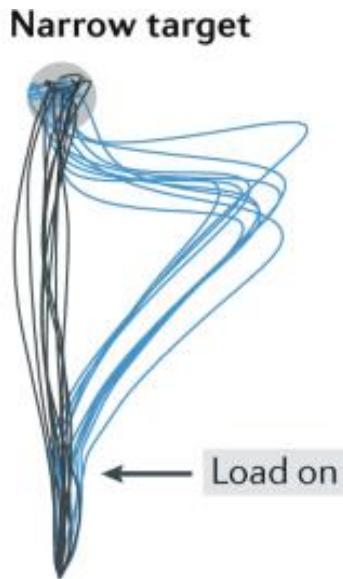
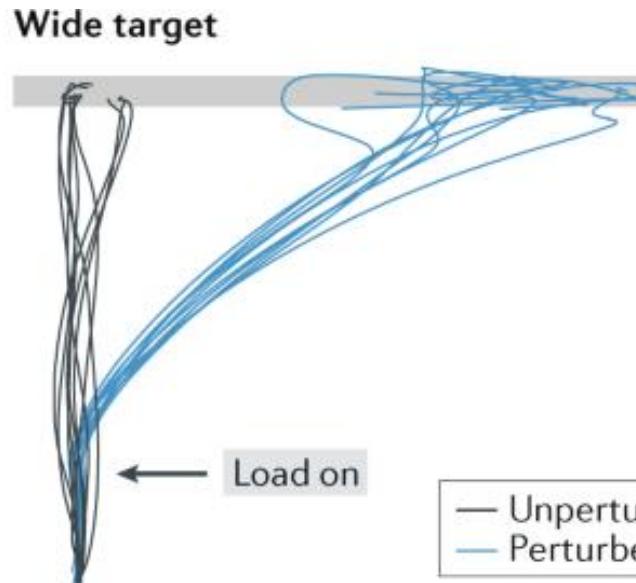
- causal model: given a motor command we can predict how it will change the world (Newtonian physics, ..) Todorov, 1998

Motor responses can correct “online”



— Unperturbed movement
— Perturbed movement

Corrective motor responses are tuned to goals



— Unperturbed movement
— Perturbed movement

How does the motor system work?

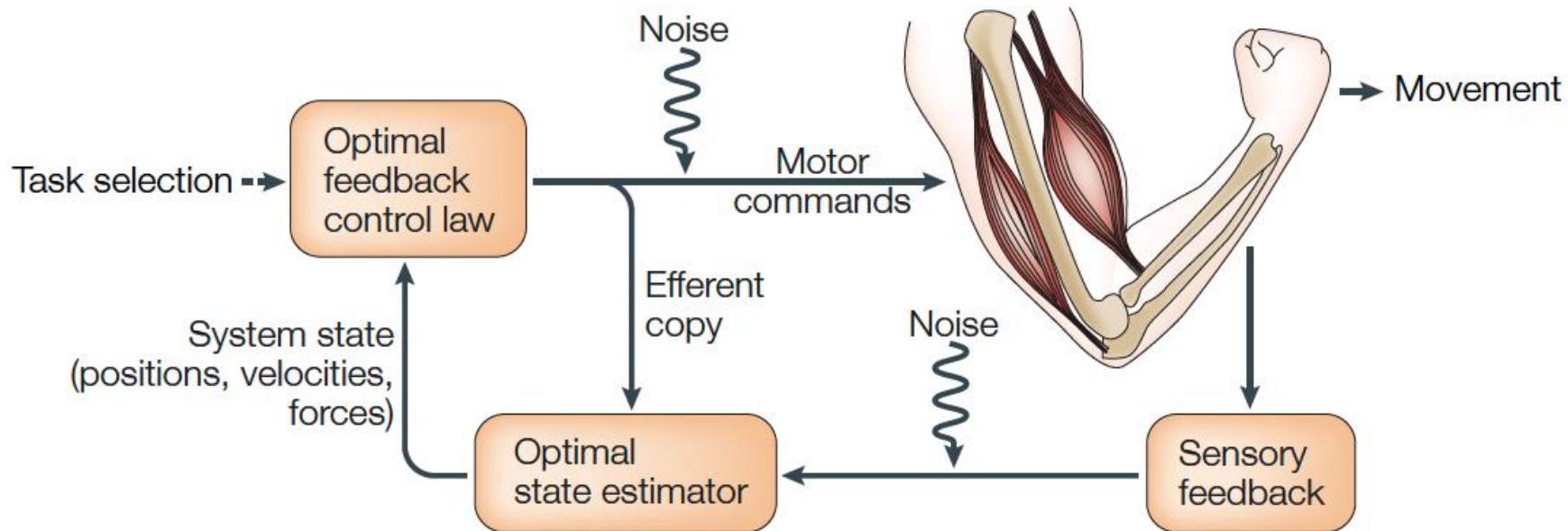
The motor system shows two apparently conflicting features:

- the ability to accomplish high-level goals reliably and repeatedly,
- despite high variability on the level of movement details

This is fundamentally incompatible with models that enforce a **strict separation between trajectory planning and trajectory execution**.

Optimal feedback control theory (OFC) postulates that the motor system approximates the best possible control scheme for a given task. It is updated online based on available information.

Optimal feedback control (OFC) theory



The computational problem of reaching

We assume that reaching (picking motor commands) is a consequence of maximizing rewards and minimizing costs.

Problem statement

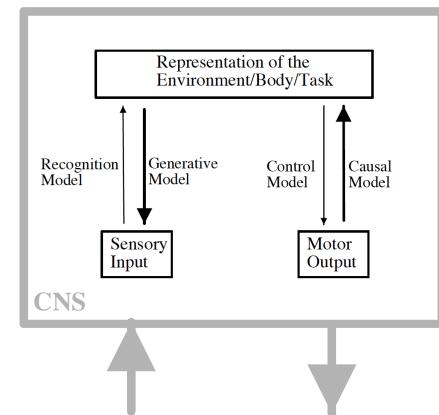
Consider a linear dynamical system with state x , control u and feedback y in discrete time t :

Dynamics $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t + \boldsymbol{\xi}_t + \sum_{i=1}^c \boldsymbol{\varepsilon}_t^i C_i \mathbf{u}_t$ Σ_t covariance of x_t

Feedback $\mathbf{y}_t = H\mathbf{x}_t + \boldsymbol{\omega}_t + \sum_{i=1}^d \boldsymbol{\epsilon}_t^i D_i \mathbf{x}_t$

Cost per step $\mathbf{x}_t^T Q_t \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

Note: this dyn. model
is a simple causal model!



What is needed?

1) The controller can only observe the state through noisy observations & needs to infer the state from noisy dynamics

Dynamics $\mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t + \xi_t + \sum_{i=1}^c \varepsilon_t^i C_i \mathbf{u}_t$

Feedback $\mathbf{y}_t = H\mathbf{x}_t + \omega_t + \sum_{i=1}^d \epsilon_t^i D_i \mathbf{x}_t$

Cost per step $\mathbf{x}_t^T Q_t \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$

2) Given state estimates, and past observations and controls one needs to compute

$$U_k^* \left(\underset{\substack{\uparrow \\ [Y_1, \dots, Y_{k-1}]} }{Y^{k-1}}, \underset{\substack{\uparrow \\ [U_1, \dots, U_{k-1}]} }{U^{k-1}}, \widehat{X}_1, \Sigma_1 \right) \text{ that minimizes } J = \mathbb{E} \left(X_N^T Q_N X_N + \sum_{k=1}^{N-1} (X_k^T Q_k X_k + U_k^T R U_k) \right)$$

$$[Y_1, \dots, Y_{k-1}] \quad [U_1, \dots, U_{k-1}]$$

3) This amounts to minimizing expected costs by taking into account possible sequences of future controls & observations

$$\min_{U_k} \left(U_k^T R U_k + \mathbb{E} (X_k^T Q_k X_k) + \mathbb{E}_{Y_k} \left(\min_{U_{k+1}} \left(U_{k+1}^T R U_{k+1} + \mathbb{E} (X_{k+1}^T Q_{k+1} X_{k+1}) + \mathbb{E}_{Y_{k+1}} (\dots) \right) \right) \right)$$

In general, this amounts to an exhaustive search in an exponentially large space.

Yet, with additive noise (next slide) there is an analytical solution!

LQR solution (for only additive noise)

Remarkably there is an analytical solution:

Kalman Filter

$$\hat{\mathbf{x}}_{t+1} = A\hat{\mathbf{x}}_t + B\mathbf{u}_t + K_t(\mathbf{y}_t - H\hat{\mathbf{x}}_t)$$

$$K_t = A\Sigma_t H^\top (H\Sigma_t H^\top + \Omega^\omega)^{-1}$$

$$\Sigma_{t+1} = \Omega^\xi + (A - K_t H) \Sigma_t A^\top$$

Linear-Quadratic Regulator

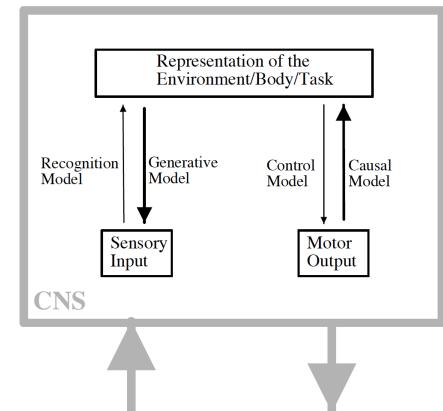
$$\mathbf{u}_t = -L_t \hat{\mathbf{x}}_t$$

$$L_t = (R + B^\top S_{t+1} B)^{-1} B^\top S_{t+1} A$$

$$S_t = Q_t + A^\top S_{t+1} (A - B L_t)$$

$$\begin{aligned} \text{Dynamics} \quad \mathbf{x}_{t+1} &= A\mathbf{x}_t + B\mathbf{u}_t + \xi_t + \sum_{i=1}^c \mathbf{c}_t^i C_i \mathbf{u}_t \\ \text{Feedback} \quad \mathbf{y}_t &= H\mathbf{x}_t + \omega_t + \sum_{i=1}^d \mathbf{c}_t^i D_i \mathbf{x}_t \\ \text{Cost per step} \quad \mathbf{x}_t^\top Q_t \mathbf{x}_t + \mathbf{u}_t^\top R \mathbf{u}_t \end{aligned}$$

Note: This hard computation
inverts the thick arrow!!



LQR solution (for only additive noise)

$$\begin{aligned}
 \text{Dynamics} \quad \mathbf{x}_{t+1} &= A\mathbf{x}_t + B\mathbf{u}_t + \xi_t + \sum_{i=1}^c \zeta_t^i C_i \mathbf{u}_t \\
 \text{Feedback} \quad \mathbf{y}_t &= H\mathbf{x}_t + \omega_t + \sum_{i=1}^d \zeta_t^i D_i \mathbf{x}_t \\
 \text{Cost per step} \quad &\mathbf{x}_t^T Q_t \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t
 \end{aligned}$$

The (optimally) estimated state propagates forward according to the Kalman Filter

Kalman Filter

Internal state estimate

Kalman gain

Internal state covariance

$$\widehat{\mathbf{x}}_{t+1} = A\widehat{\mathbf{x}}_t + B\mathbf{u}_t + K_t (\mathbf{y}_t - H\widehat{\mathbf{x}}_t) \quad (3.2)$$

$$K_t = A\Sigma_t H^\top (H\Sigma_t H^\top + \Omega^\omega)^{-1}$$

$$\Sigma_{t+1} = \Omega^\xi + (A - K_t H) \Sigma_t A^\top$$

Sensory feedback covariance

Motor noise covariance

LQR solution (for only additive noise)

The optimal control law is obtained from the state estimate (of the KF), and *constant* matrices propagated backwards in time!

$$\begin{aligned}
 \text{Dynamics} \quad \mathbf{x}_{t+1} &= A\mathbf{x}_t + B\mathbf{u}_t + \xi_t + \sum_{i=1}^c \mathbf{c}_t^i \mathbf{C}_i \mathbf{u}_t \\
 \text{Feedback} \quad \mathbf{y}_t &= H\mathbf{x}_t + \omega_t + \sum_{i=1}^d \mathbf{c}_t^i \mathbf{D}_i \mathbf{x}_t \\
 \text{Cost per step} \quad &\mathbf{x}_t^T Q_t \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t
 \end{aligned}$$

Linear-Quadratic Regulator

Control Law

$$\mathbf{u}_t = -L_t \widehat{\mathbf{x}}_t$$

$$L_t = (R + B^T S_{t+1} B)^{-1} B^T S_{t+1} A$$

$$S_t = Q_t + A^T S_{t+1} (A - B L_t)$$

Does not depend on noise covariances;
only KF depends on it (*Separation principle*)

Note: the optimal control law is computed from the optimal estimate, not the actual state!

- This is called the **certainty-equivalence principle**.

LQR solution (for only additive noise)

Kalman Filter

$$\widehat{\mathbf{x}}_{t+1} = A\widehat{\mathbf{x}}_t + B\mathbf{u}_t + K_t(\mathbf{y}_t - H\widehat{\mathbf{x}}_t)$$

$$K_t = A\Sigma_t H^\top (H\Sigma_t H^\top + \Omega^\omega)^{-1}$$

$$\Sigma_{t+1} = \Omega^\xi + (A - K_t H) \Sigma_t A^\top$$

Linear-Quadratic Regulator

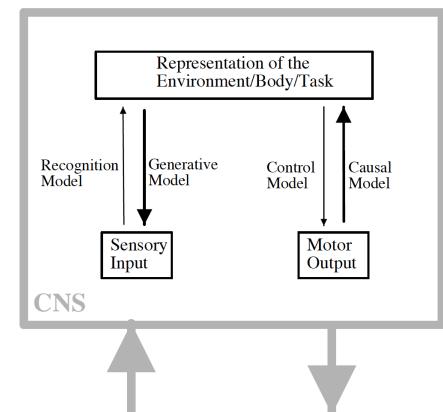
$$\mathbf{u}_t = -L_t \widehat{\mathbf{x}}_t$$

$$L_t = (R + B^\top S_{t+1} B)^{-1} B^\top S_{t+1} A$$

$$S_t = Q_t + A^\top S_{t+1} (A - B L_t)$$

$$\begin{aligned} \text{Dynamics} \quad \mathbf{x}_{t+1} &= A\mathbf{x}_t + B\mathbf{u}_t + \xi_t + \sum_{i=1}^c \gamma_t^i C_i \mathbf{u}_t \\ \text{Feedback} \quad \mathbf{y}_t &= H\mathbf{x}_t + \omega_t + \sum_{i=1}^d \gamma_t^i D_i \mathbf{x}_t \\ \text{Cost per step} \quad \mathbf{x}_t^\top Q_t \mathbf{x}_t + \mathbf{u}_t^\top R \mathbf{u}_t \end{aligned}$$

Note: This hard computation
inverts the thick arrow!!



$$\widehat{\mathbf{x}}_{t+1} = A\widehat{\mathbf{x}}_t + B\mathbf{u}_t + K_t(\mathbf{y}_t - H\widehat{\mathbf{x}}_t) + \eta_t$$

$$Dynamics \quad \mathbf{x}_{t+1} = A\mathbf{x}_t + B\mathbf{u}_t + \xi_t + \sum_{i=1}^c \varepsilon_t^i C_i \mathbf{u}_t$$

$$Feedback \quad \mathbf{y}_t = H\mathbf{x}_t + \omega_t + \sum_{i=1}^d \epsilon_t^i D_i \mathbf{x}_t$$

$$Cost \text{ per step} \quad \mathbf{x}_t^T Q_t \mathbf{x}_t + \mathbf{u}_t^T R \mathbf{u}_t$$

$$Controller \quad \mathbf{u}_t = -L_t \widehat{\mathbf{x}}_t$$

$$L_t = \left(R + B^T S_{t+1}^x B + \sum_i C_i^T (S_{t+1}^x + S_{t+1}^e) C_i \right)^{-1} B^T S_{t+1}^x A$$

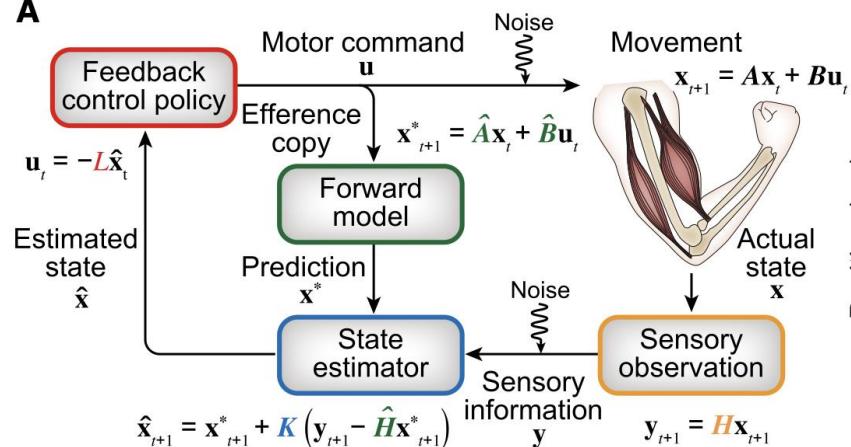
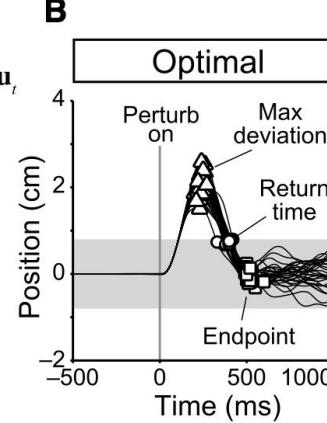
$$S_t^x = Q_t + A^T S_{t+1}^x (A - B L_t) + \sum_i D_i^T K_t^T S_{t+1}^e K_t D_i; \quad S_n^x = Q_n$$

$$S_t^e = A^T S_{t+1}^x B L_t + (A - K_t H)^T S_{t+1}^e (A - K_t H); \quad S_n^e = 0$$

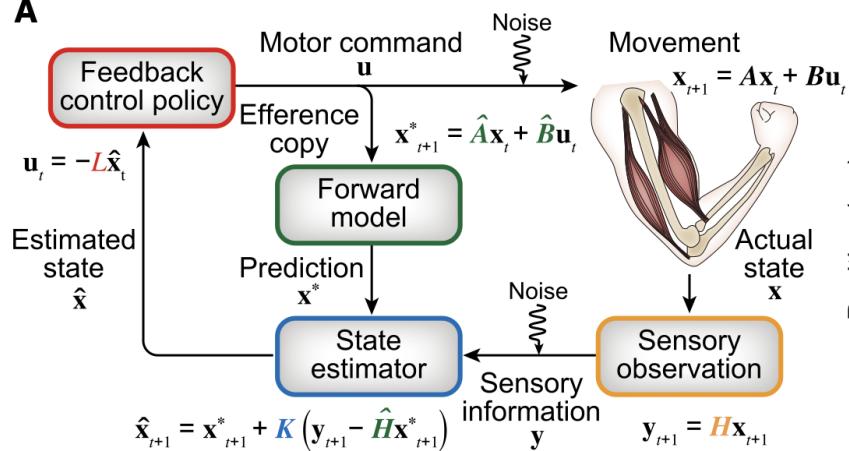
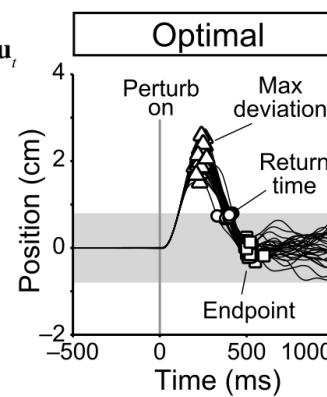
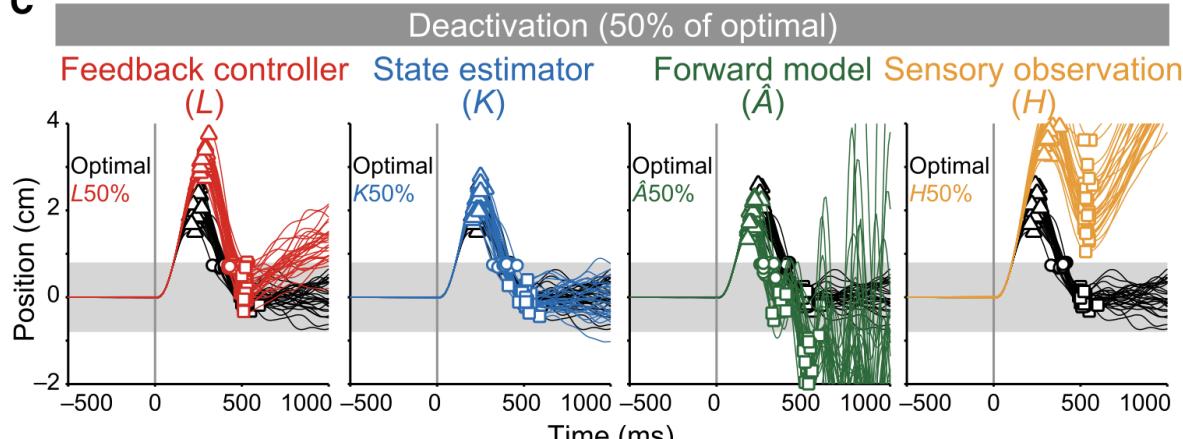
$$s_t = \text{tr}(S_{t+1}^x \Omega^\xi + S_{t+1}^e (\Omega^\xi + \Omega^\eta + K_t \Omega^\omega K_t^T)) + s_{t+1}; \quad s_n = 0.$$

Linking brain areas
to computations

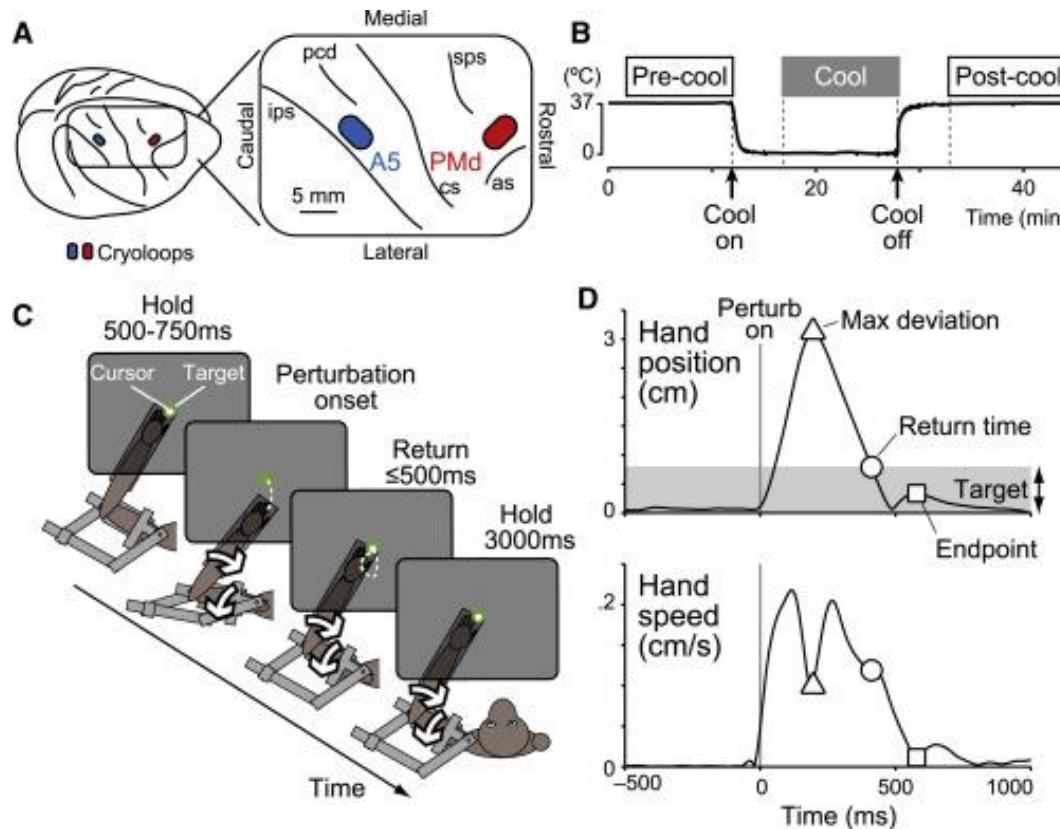
Modeling predictions

A**B**

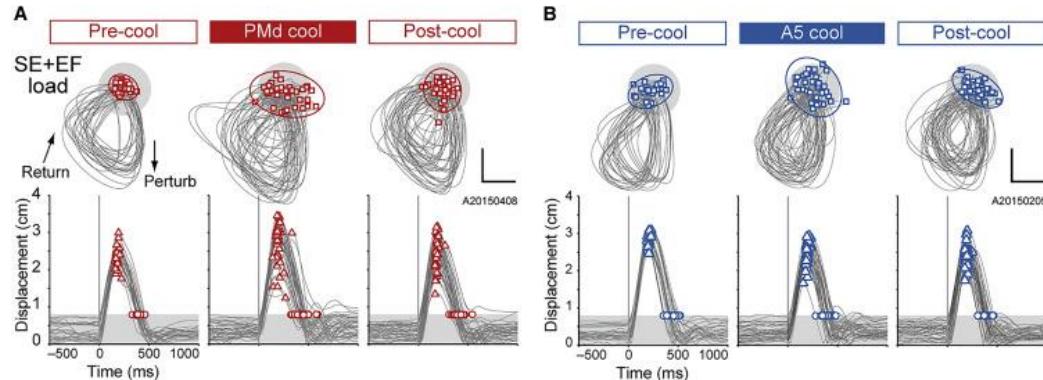
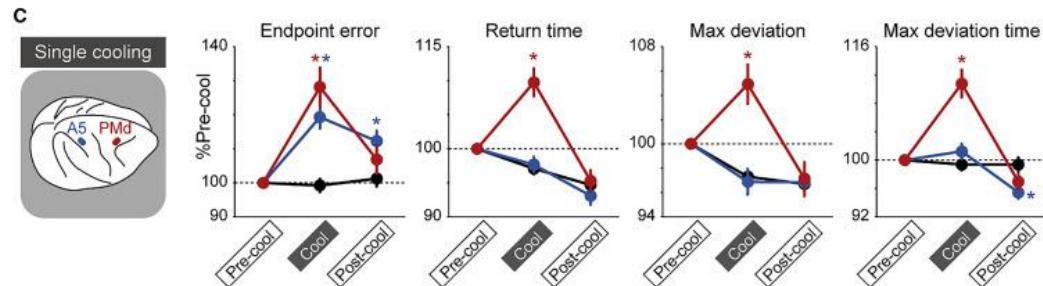
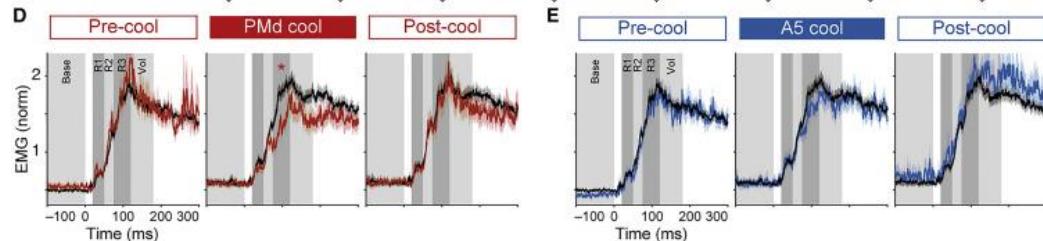
Modeling predictions

A**B****C**

Cooling the brain



Experimental results for PMd and A5 cooling



These results are consistent with our hypothesis that PMd cooling impairs the feedback control policy.

When A5 was cooled, the endpoint variability was increased similarly to the PMd cooling. However, in contrast to PMd cooling, during A5 cooling monkey was still able to return to the target quickly within 500 ms

Take-home messages

- Many behaviors are generated by pattern generators (locomotion, breathing, ...)
- Feedback plays a key role for skilled behavior
- Optimal feedback control theory explains two apparently conflicting features: high accuracy and high variability
- *OFC shows that in the face of uncertainty the optimal strategy is to allow variability in redundant (task-irrelevant) dimensions*
- *From this framework, task-constrained variability, goal-directed corrections, motor synergies ... emerge [Todorov 2001 & 2004]*
- Somatosensory, parietal and premotor areas play key roles in feedback base control and motor adaptation – and we have evidence which areas are involved in specific components.
- However, how neural circuits implement these computations remains an open question