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=PrL Reverse engineering neural circuits
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=PFL  Why is control hard for the brain?

= Unlike (typical) robots, animals live in uncertain environments

= Animals perform a wide range of behaviors

= Animals have many degrees of freedoms (e.g. human > 600 muscles)
= Biological sensors are slower and noisier

= Animal bodies change substantially over time (development, injury, fatigue,
exercise,..). Our brain needs to adapt continuously

= Complex animals learn most of their behavioral repertoire, so the brain needs
to not only control behavior, but also build control control algorithms...



=PFL  Behavior is hierarchical

3rd level 2nd level Level of the
“Erbkoordination”
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EPFL Hierarchical BehaveMAE (hBehaveMAE)
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=PFL  Vertebrate motor control

a The motor infrastructure

Cerebral cortex
Fine motor control
(speech, hand/finger

coordination)
Cerebellum

Spinal cord
Protective reflexes

Locomotion ) [ 7]
5 “/ Basal ganglia

Hypothalamus
Brainstem Feeding
Respiration Drinking
Chewing
Swallowing

Eye movements

Grillner, Nature Review Neuroscience 2003



=PFL  Vertebrate motor control

a The motor infrastructure
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Fine motor control
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b The vertebrate control scheme for locomotion
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=PL  Pattern generation in the intact lamprey and an
isolated spinal circuit

Intact lamprey — locomotion

Note: alternation of 1/3 and 2/4 plus lag between 1 and 2.

Grillner, Nature Review Neuroscience 2003



=PL  Pattern generation in the intact lamprey and an
isolated spinal circuit

Intact lamprey — locomotion Isolated spinal cord — fictive locomotion
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Grillner, Nature Review Neuroscience 2003




=PFL  Brain stem circuits to control locomotion

b The vertebrate control scheme for locomotion
Selection Initiation Pattern generation
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=PFL Brain stem circuits to control reaching & handling
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=PFL Reminder: Coding for the direction of movement
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=PFL  Goaldriven modeling of motor control

Different colors correspond to
different targets/conditions

Firing rate
(spikes per s)

L]
Move onset Time

Acquire touch Target onset

Susillo et al. Nature Neuro 2015



=PFL  Goal-driven modeling of motor control

Technically data-driven as they fit EMG

Different colors correspond to
different targets/conditions

Perimovement
period

Firing rate
(spikes per s)

Acquire touch Target onset ® e "

Target Move onset Time

c d (ms)
Single condition ';
Single condition EMG <

input ] o, s -

E Condition 1 Condition 2 Condition 3
Tar'get Move.on;i Tar-get Move.ons_e-t Tar'get Move-on;i

Susillo et al. Nature Neuro 2015



=PFL Example Data

Example M1 units

Target Move onsel Susillo et al. Nature Neuro 2015



PFL Model predictions

Example M1 units Model units w/wo regularization
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Cerebral cortex
Fine motor control
(speech, hand/finger
coordination)

Cerebellum

Hypothalamus

Brainstem Fe_edllng
Respiration Drinking
Chewing

Swallowing

Eye movements

How are the many
degrees of freedom
tamed?




How many muscle states
are there?

9600

(for 600 muscles assuming q states per muscle)



=PrL
Muscle synergies
ey as principle for
bedog ) motor control
’ .;}ﬁf!)




=PrL

Integration of feedback?

From (open-loop) pattem generationto
control theory

Note: Feedback is also present in
- spinal cord/brain stem examples!




""" . Motor skills need sensory feedback

AGENT: BIOLOGICAL CNS
Muscle length
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=PFL  Simple skills require feedback

Video taken from Roland Johansson Lab - Department of
Integrative Medical Biology. Umea University, Sweden



Direct model of perception and control

Representation of the
Environment/Body/Task

A

Feature
Extraction

Sensory
Input

Motor
Program

Motor
Output

Todorov, 1998



=PFL Inverse models of perception and motor control

Representation of the

Environment/Body/Task
3
Recognition| |Generative Control Causal
Model Model Model Model
Y
Sensory Motor
Input Output

P(G|M) causal model

P(M) Movement prior

P(M|G)

Objective: find motor commands
with high posterior probability!

M Motor command
G goal/target

The thin arrows correspond to the the directions that are desirably but harder to implement!

The thick arrows correspond to well-defined (relatively simpler transformations);
e.g., - generative model of vision: given the state of the world, predicting the retinal image (Optics,... )

= - causal model: given a motor command we can predict how it will change the world (Newtonian physics,

) Todorov, 1998



EPFL  Motor responses can correct “online”

Narrow target

— Unperturbed movement
Perturbed movement

Nashed, Crevecoeur & Scott J. Neuro 2012



=PFL  Corrective motor responses are tuned to goals

Narrow target Wide target

— Unperturbed movement
— Perturbed movement

Nashed, Crevecoeur & Scott J. Neuro 2012



=PFL How does the motor system work?

The motor system shows two apparently conflicting features:
= the ability to accomplish high-level goals reliably and repeatedly,
= despite high variability on the level of movement details

This is fundamentally incompatiblewith models that enforce a strict separation
between trajectory planning and trajectory execution.

Optimal feedback control theory (OFC) postulates that the motor system
approximates the best possible control scheme for a given task. It is updated
online based on available information.

Todorov & Jordan, Nature Neuroscience 2001



=PFL  Optimal feedback control (OFC) theory

Noise
=» Movement
Optimal
Task selection =»| feedback corl\n/lr?]tgrq =
control law
A Efferent
System state copy
(positions, velocities,

A4

forces) —— g "
& | ptima ensory
{ state estimator | feedback

Scott, Nature Reviews Neuroscience 2004




=PFL  The computational problem of reaching

We assume that reaching (picking motor commands)
is @ consequence of maximizing rewards and minimizing costs.



=PFL  Problem statement

Consider a linear dynamical system with state x, control u and feedback y in discrete time t:

C
Dynamics Xt41 = Axt + But + £t + E S;Ciut 2 covariance of X,
i=1

d
Feedback = th + w; + Z 6; Dixt Note: this dyn. model

is a simple causal model!

1=1
C t t T T R Representation of the
OS per S ep Xt t Xt —I— u.t u.t Environment/Body/Task
Recognit: \ lGenelanve Connoll I(‘ausal
Model Model Model Model
Sensory Motor
Input Output

Todorov, Neural Computation 2005



cPrL What is newed? Dynamics Xi41 = Axy + Buy + & + XC: e;Ciuy

i=1
d .
Feedback y: = Hx; + w; + Z €; Dix;
1) The controller can only observe the state through P

noisy observations & needs to infer the state from noisy Cost per step x;[ Qix; + utT Ru;
dynamics

2) Given state estimates, and past observations and controls one needs to compute

R N—1
U]j; (Yk—l , []k—l7 Xl ’ 21) that minimizes J =E (X}}QNXN + Z (X7 QuXi + U,;FRUk))
f "\ .

[Yla---ayk—l] {Ul:-'-akal]

3) This amounts to minimizing expected costs by taking into account possible sequences of future controls & observations

min (U,}'RUk +E (X]QuXe) + (min (UEHRUW FE(XEQun X)) + (- ))))
. k k

U Ukt

In general, this amounts to an exhaustive search in an exponentially large space.

- Yet, with additive noise (next slide) there is an analytical solution! Todorov, 1998
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=PFL  LQR solution (for only additive noise)

. . . D j = Ax; + B o
Remarkably there is an analytical solution: ynamics - Xe = At B & +%
d
Feedback y: = Hx; + wy +W
Kalman Filter

Cost per step  x! Qix; + ul Ry,

Xi41 = AX; + Bu; + K; (y: — HX;)
K; = A, H'(HXZ,H™ + Qw)~1
Et—l—l — Q£ + (A L KtH) ZtAT Note: This hard computation

inverts the thick arrow!!

Representation of the

Linear-Quadratic Regulator A» \ l ‘A H
ut —_— — L t/x\‘t Model Model Model Model
Ly =(R+ BTSH—l B)_lBTSH_'lA
St = Qi+ A'S11(A— BLy)

Todorov, Neural Computation 2005



=PFL  LQR solution (for only additive noise)

C
Dynamics Xi+1 = A + Buy + & +W
i ‘ 1=1
Feedback vy = Hx + w; +W
1=1

Cost per step  x! Qix; + ul Ry,

The (optimally) estimated state propagates forward according to the Kalman Filter

Kalman Filter
Internal state estimate §t+1 = Ai} + Bu; + K; (Yt _ H’)'(t)
Kalman gain Kt — AEtHT(HEtHT 1+ Qv —1 (3.2)
Internal state covariance  23f41 = Q¢+ (A— K,H) X, AT Sensory feedback covariance
\

Motor noise covariance

Todorov, Neural Computation 2005



=PrL

LQR solution (for only additive noise)

Dynamics xi = A5+ Bu + & + 3
1=1
The optimal control law is obtained from the state estimate (of the KF),

d
Feedback vy = Hx + w; +W
N o . | =1
and constant matrices propagated backwards in time! Cost perstep  xT Qpx; +ul Ruy

Linear-Quadratic Requlator
Control Law ut — L t?t

L, = (R + BTSH_l B)_l BTSH_1A
St =Q+ A'S 1 (A— BLy)
\ Does not depend on noise covariances;

only KF depends on it (Separation principle)

Note: the optimal control law is computed from the optimal estimate, not the actual state!
®™ This is called the certainty-equivalence principle.

Todorov, Neural Computation 2005
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=PFL  LQR solution (for only additive noise)
Dynamics X1 = Ax; + Buy + &, +?t/ut

Kalman Filter Zi”p"tp y;H+ :2:);/{
X411 = AX; + Bu; + K; (y; — HX;)

K, = AL, HT(HE, HT 4+ Q@)

21 = Qf 1+ (A— K;H) ZtAT Note: This hard computation

inverts the thick arrow!!

Representation of the
Environment/Body/Task

Linear-Quadratic Regulator H | |

Recognition Jenerative
L —_— Mode!

Lt — (R -+ BTSH_’l B)_lBTSH_]A
St = Qi+ A'S11(A— BLy)

Todorov, Neural Computation 2005



=PFL  The full case...

Cc
Dynamics Xip1 = A+ Buy + & + Zeic,’ut
i=1

Feedback y: = Hx; + w + Xd: eZD,-xt
i}—Fl — A’i} _|— But —|— Kf(Yf — H&}) —|— nt Cost per step  x! Qix; + ul Ry, -
Controller w; = —Lsx;
~1
Ly= ( BTStXHB + ZCT f+1 T f+1)ci) B' t+1A
= Qi+ ATS* (A— BLt) + Z D/K'S¢ K:D;; ¥ =0,
SF = ATStXHBLf + (A— KtH) SJrl (A— K;H):; S5 =0
sp = tr(S Q8 + S8 (2F + Q1+ KiQ¥K]T)) +5401: s, =0.

Todorov, Neural Computation 2005
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Linking brain areas
to computations




=PFL  Modeling predictions

A Noise B
Motor command % Movement | Onti |
l Feedback I u . x, = Ax + Bu, ptimal
. > + 4
control policy Efference | , _ - R 5 —— Max
A copy X, =Ax + By, on deviation
u = -LX E
Forward S 2
. model g
Estimated SR Actual o
state Prediction state G o
8 * Noise ¢ X o)
X X A4 O
- | State ‘ Sensory ) Endpoint
estimator Sensory observation 500 0 500 1000
5 ik ~ .\ information _ Time (ms)
X=Xt K (yt+l_ Hx rH) y e

Takei et al., Curr Biology 2021
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Modeling predictions

A Noise
Motor command g
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X, = AX + Bu,
v

Actual
state
J, X

Sensory observation

t+1 Xr+l

Position (cm)
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4
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/
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Optimal
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\S]
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Takei et al., Curr Biology 2021
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Cooling the brain

88 Cryoloops
C Hold

500-750ms

Cursor Target

NG~

[Frewoa]
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Perturbation

20
Cool Cool  Time (min)
on off

Hand Pegt#rb _Max deviation
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Return time
Target t
\
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Hand
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(cm/s)
-500 0 500 1000

Time (ms)

Takei et al., Curr Biology 2021



=L Experimental results for PMd and A5 cooling

A B
EET [ Postcoo | [ Precoo | IENASITTINEN

SE+EF _en
load &8

w

These results are consistent with our
hypothesis that PMd cooling impairs the
feedback control policy.

N
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Takei et al., Curr Biology 2021



=PFL  Take-home messages

= Many behaviors are generated by pattern generators (locomaotion,
breathing, ...)

= Feedback plays a key role for skilled behavior

= Optimal feedback control theory explains two apparently conflicting
features: high accuracy and high variability

= OFC shows that in the face of uncertainty the optimal strategy is to
allow variability in redundant (task-irrelevant) dimensions

= From this framework, task-constrained variability, goal-directed
corrections, motor synergies ... emerge [Todorov 2001 & 2004]

= Somatosensory, parietal and premotor areas play key roles in
feedback base control and motor adaptation — and we have
evidence which areas are involved in specific components.

= However, how neural circuits implement these computations
remains an open question
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