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Reverse engineering neural circuits

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021



Human motor control example

https://www.youtube.com/watch?v=fbqHK8i-HdA



▪ Unlike (typical) robots, animals live in uncertain environments 

▪ Animals perform a wide range of behaviors

▪ Animals have many degrees of freedoms (e.g. human > 600 muscles) 

▪ Biological sensors are slower and noisier 

▪ Animal bodies change substantially over time (development, injury, fatigue, 
exercise,..). Our brain needs to adapt continuously 

▪ Complex animals learn most of their behavioral repertoire, so the brain needs 
to not only control behavior, but also build control control algorithms…

Why is control hard for the brain?



Tinbergen, 1942

Behavior is hierarchical

Activities & Actions Movemes

Anderson & Perona Neuron 2014

Stoffl, Bonnetto, d’Ascoli, Mathis ECCV 2024



Hierarchical BehaveMAE (hBehaveMAE)

Stoffl, Bonnetto, d’Ascoli, Mathis ECCV 2024



Anatomy 
of motor control & 
pattern generators



Vertebrate motor control

Grillner, Nature Review Neuroscience 2003 



Vertebrate motor control

Grillner, Nature Review Neuroscience 2003 



Pattern generation in the intact lamprey and an 
isolated spinal circuit

Grillner, Nature Review Neuroscience 2003 
Note: alternation of 1/3 and 2/4 plus lag between 1 and 2. 



Pattern generation in the intact lamprey and an 
isolated spinal circuit

Grillner, Nature Review Neuroscience 2003 

superfusion of glutamate agonists 



Brain stem circuits to control locomotion

Leiras, Cregg & Kiehn Annual Review of Neuroscience 2021
MLR, mesencephalic locomotor region; PPN, pedunculopontine nucleus; 

RFL, right forelimb; RHL, right hindlimb.



Brain stem circuits to control reaching & handling

Arber & Costa Nature Review Neuroscience 2022



Cortical control



Reminder: Coding for the direction of movement 



Goal-driven modeling of motor control

Susillo et al. Nature Neuro 2015

Different colors correspond to 
different targets/conditions



Goal-driven modeling of motor control

Susillo et al. Nature Neuro 2015

Technically data-driven as they fit EMG

Different colors correspond to 
different targets/conditions



Example Data

Susillo et al. Nature Neuro 2015

Example M1 units



Model predictions 

Susillo et al. Nature Neuro 2015

Example M1 units Model units w/wo regularization



How are the many 
degrees of freedom 
tamed?



How many muscle states 
are there? 

q^600 
(for 600 muscles assuming q states per muscle)



Muscle synergies 
as principle for 
motor control

Torricelli et al., Emerging Therapies in Neurorehabilitation 2015



Integration of feedback?
From (open-loop) pattern generation to 
control theory

Note: Feedback is also present in 
spinal cord/brain stem examples! 



Motor skills need sensory feedback

Sensory feedback

Motor commands

Muscle spindles

GTOs

• Muscle length
• Muscle velocity
• Muscle force
• Touch



Simple skills require feedback

Video taken from Roland Johansson Lab - Department of 
Integrative Medical Biology. Umea University, Sweden



Direct model of perception and control

Todorov, 1998



Inverse models of perception and motor control

Todorov, 1998

The thin arrows correspond to the the directions that are desirably but harder to implement!

The thick arrows correspond to well-defined (relatively simpler transformations); 
e.g., - generative model of vision: given the state of the world, predicting the retinal image (Optics,… )

- causal model: given a motor command we can predict how it will change the world (Newtonian physics, ..)

𝑃(𝑀|𝐺)

𝑃(𝐺|𝑀)

𝑃(𝑀)

causal model

Movement prior

Objective: find motor commands 
with high posterior probability! 

M Motor command
G goal/target



Motor responses can correct “online”

Nashed, Crevecoeur & Scott J. Neuro 2012



Corrective motor responses are tuned to goals

Nashed, Crevecoeur & Scott J. Neuro 2012



The motor system shows two apparently conflicting features:

▪ the ability to accomplish high-level goals reliably and repeatedly, 

▪ despite high variability on the level of movement details

This is fundamentally incompatible with models that enforce a strict separation 
between trajectory planning and trajectory execution.

Optimal feedback control theory (OFC) postulates that the motor system 
approximates the best possible control scheme for a given task. It is updated 
online based on available information.

How does the motor system work?

Todorov & Jordan, Nature Neuroscience 2001



Optimal feedback control (OFC) theory 

Scott, Nature Reviews Neuroscience  2004



The computational problem of reaching

We assume that reaching (picking motor commands)
is a consequence of maximizing rewards and minimizing costs.



Problem statement

Consider a linear dynamical system with state x, control u and feedback y in discrete time t:

Todorov, Neural Computation 2005

Note: this dyn. model
is a simple causal model!

Σ𝑡 covariance of 𝑥𝑡



What is needed?

1) The controller can only observe the state through 
noisy observations & needs to infer the state from noisy 
dynamics

3) This amounts to minimizing expected costs by taking into account possible sequences of future controls & observations

that minimizes

2) Given state estimates, and past observations and controls one needs to compute

In general, this amounts to an exhaustive search in an exponentially large space.

Yet, with additive noise (next slide) there is an analytical solution! Todorov, 1998



LQR solution (for only additive noise)

Remarkably there is an analytical solution: 

Todorov, Neural Computation 2005

Note: This hard computation 
inverts the thick arrow!!



LQR solution (for only additive noise)

Sensory feedback covariance

Motor noise covariance

Internal state estimate

Kalman gain

Internal state covariance

The (optimally) estimated state propagates forward according to the Kalman Filter

Todorov, Neural Computation 2005



LQR solution (for only additive noise)

Control Law

Does not depend on noise covariances; 
only KF depends on it (Separation principle)

The optimal control law is obtained from the state estimate (of the KF), 
and constant matrices propagated backwards in time!

Note: the optimal control law is computed from the optimal estimate, not the actual state! 
This is called the certainty-equivalence principle. Todorov, Neural Computation 2005



LQR solution (for only additive noise)

Todorov, Neural Computation 2005

Note: This hard computation 
inverts the thick arrow!!



The full case…

Todorov, Neural Computation 2005



Linking brain areas 
to computations



Modeling predictions

Takei et al., Curr Biology 2021



Modeling predictions

Takei et al., Curr Biology 2021



Cooling the brain

Takei et al., Curr Biology 2021



Experimental results for PMd and A5 cooling

These results are consistent with our 
hypothesis that PMd cooling impairs the 
feedback control policy.

When A5 was cooled, the endpoint 
variability was increased similarly to the 
PMd cooling. However, in contrast to PMd
cooling, during A5 cooling monkey was 
still able to return to the target quickly 
within 500 ms

Takei et al., Curr Biology 2021



▪ Many behaviors are generated by pattern generators (locomotion, 
breathing, …) 

▪ Feedback plays a key role for skilled behavior

▪ Optimal feedback control theory explains two apparently conflicting 
features: high accuracy and high variability 

▪ OFC shows that in the face of uncertainty the optimal strategy is to 
allow variability in redundant (task-irrelevant) dimensions

▪ From this framework, task-constrained variability, goal-directed 
corrections, motor synergies … emerge [Todorov 2001 & 2004]

▪ Somatosensory, parietal and premotor areas play key roles in 
feedback base control and motor adaptation – and we have 
evidence which areas are involved in specific components. 

▪ However, how neural circuits implement these computations 
remains an open question

Take-home messages
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